Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements.
نویسندگان
چکیده
PURPOSE We combined finite element (FE) analysis and dynamic magnetic resonance imaging (MRI) to estimate optic nerve head (ONH) strains during horizontal eye movements, and identified factors influencing such strains. We also compared ONH strains (prelamina, lamina cribrosa, and retrolamina strains) induced by eye movements to those induced by IOP. METHODS The ocular globes and orbits of a healthy subject were visualized during horizontal eye movements (up to 13°), using dynamic MRI. A baseline FE model of one eye was reconstructed in the primary gaze position, including details from the orbital and ONH tissues. Finite element-derived ONH strains induced by eye movements were compared to those resulting from an IOP of 50 mm Hg. Finally, a FE sensitivity study was performed, in which we varied the stiffness of all ONH connective tissues, to understand their influence on ONH strains. RESULTS Our models predicted that, during horizontal eye movements, the optic nerve pulled the ONH posteriorly. Optic nerve head strains following a lateral eye movement of 13° were large and higher than those resulting from an IOP of 50 mm Hg. These results held true even with variations in connective tissue stiffness. We also found that stiff sclerae reduced lamina cribrosa and prelamina strains during eye movements, but stiff optic nerve sheaths significantly increased those strains. CONCLUSIONS Our models predicted high ONH strains during eye movements, which were aggravated with stiffer optic nerve sheaths. Further studies are needed to explore links between ONH strains induced by eye movements and axonal loss in glaucoma.
منابع مشابه
Predictions of Optic Nerve Traction Forces and Peripapillary Tissue Stresses Following Horizontal Eye Movements.
Purpose To use finite element (FE) analysis to predict the optic nerve sheath traction forces that act on the optic nerve head (ONH) following horizontal eye movements, and the resulting stress levels in the peripapillary connective tissues of the ONH (Bruch's membrane [BM] and sclera). Methods An FE model of a healthy eye was reconstructed in primary gaze position that included details from ...
متن کاملReconstruction of human optic nerve heads for finite element modeling.
PURPOSE Glaucoma is a common ocular disease whose pathogenesis is hypothesized to involve biomechanical damage to optic nerve tissues. Here we describe a method for the construction of patient-specific models that can be used to evaluate the biomechanical environment within the optic nerve head. We validate the method using a virtual eye, and demonstrate its use in computing optic nerve head bi...
متن کاملThe Optic Nerve in Moving Pictures
Prevailing concepts of the optic nerve (ON) head (ONH) and peripapillary region have been informed by static histologic and photographic images. Consequently, most investigators have been biased to envision the ONH region as largely rigid. Sibony’s accompanying paper highlights a dynamic view, employing geometric morphometric analysis of optical coherence tomography of the ONH region in idiopat...
متن کاملFinite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure.
PURPOSE Visual impairment and intracranial pressure (VIIP) syndrome is a health concern for long-duration spaceflight, and a proposed risk factor is elevation of intracranial pressure (ICP). Our goal was to use finite element modeling to simulate how elevated ICP and interindividual differences affect tissue deformation within the optic nerve head (ONH). METHODS We considered three ICP condit...
متن کاملFinite element modeling of optic nerve head biomechanics.
PURPOSE Biomechanical factors have been implicated in the development of glaucomatous optic neuropathy, particularly at the level of the lamina cribrosa. The goal of this study was to characterize the biomechanics of the optic nerve head using computer modeling techniques. METHODS Several models of the optic nerve head tissues (pre- and postlaminar neural tissue, lamina cribrosa, central reti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 57 6 شماره
صفحات -
تاریخ انتشار 2016